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Abstrac t  

On the basis of electron-density considerations, graphic 
explanations are given of triplets and positive and 
negative quartets. It is shown that the number of useful 
negative relations will always be much smaller than the 
number of useful positive relations. 

Introduct ion 

The most important relation used in direct methods is 
the triplet or Y. z relation: 

~0H + ~0K + ~0-H-K ----- 0 (1) 

for large values of 

E 3 : N - 1 / 2  lEa EK E-H-K[ .  (2) 

Although the triplet relation in its centrosymmetric 
form is already implicitly present in the Harker-Kasper 
inequalities (Harker & Kasper, 1948) and the deter- 
minant inequalities of Karle & Hauptman (1950), the 
first explicit formulation was given by Sayre (1952), 
Cochran (1952) and Zachariasen (1952). The non- 
centrosymmetric form of (1) was first formulated by 
Cochran (1955), although again this expression was 
implicitly present in many older papers. 

Structures can be phased reliably with (1). In 
symmorphic space groups (e.g. P1, P1) and polar space 
groups (e.g. P21), however, the most consistent solution 
often is an artefact. Also, the selection of a good set of 
reflections to start a phase determination with (1) is too 
often a problem. In such cases additional information is 
necessary to arrive at the solution of the phase problem 
and this information may be obtained from quartet 
relations: 

~0n + ~0K + ~,0L + q~-H-K-L = p  (3) 

for large values of 

E4 = N -1 EH EK EL E-n-K-L, (4) 

in which p may have any value. The following special 
cases can be distinguished. 
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(1)p_~0 
For large values o fE  4 the most probable value ofp is 

0. This relationship, now commonly referred to as a 
positive quartet, was already known as the ~5 formula 
(Hauptman & Karle, 1953) and independently it was 
derived by Simerska (1956). Later it was shown 
(Schenk, 1973a) that, for a successful application, it is 
of paramount importance to include the cross terms H 
+ K, K + L and H + L. Only when these terms are 
strong does the positive quartet give a reliable 
indication. 

(2) p _ n 
Again, for large E4, but now for small values of the 

cross terms, the negative-quartet relation with p = n is 
obtained (Hauptman, 1974; Schenk, 1974). 

(3)p ~_ +n/2 
For large E 4 and moderate values of IEH+ K I, I EK+LI 

and IEn+LI these enantiomorph-specific quartets are 
found (Hauptman, 1975), which can be used in an 
enantiomorph-specific figure of merit (FOM) to be used 
in space groups like P21 (van der Putten & Schenk, 
1979). 

The precursor of the negative-quartet relation was 
the two-dimensional analogue (Schenk & de Jong, 
1973; Schenk, 1973b) 

~0n + ~0n + ~0-H+K + ~0-.-K --~ n (5) 

for large IEHI, [E-n+KI and IE-H_KI and small IEKI. 
Although this relation followed from a generalization 

of one of the Harker-Kasper inequalities in P1, it was 
shown by a graphical method to hold for any space 
group (Schenk, 1973b). 

The main object of this paper is to explain the 
negative-quartet relationship (4) with p _~ n in terms of 
the electron-density distribution in the crystal. Similar 
treatments will be given for the triplets of the Y2 
relationships, the special negative quartet (5) and the 
positive-quartet relationship (4) with p _ 0. Simple 
physical pictures such as this are attractive for teaching 
purposes (e.g. Schenk, 1971, 1979), and may, more- 
over, point the way for new developments (e.g. Schenk, 
1973b). 
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Strong and weak structure factors 

If the atoms lie in the neighbourhood of the set of 
planes H, as indicated in Fig. 1 (a), the reflection has a 
large intensity, while the intensity is small if the atoms 
are randomly distributed (Fig. lb). This follows directly 
from the structure factor expression 

N 

F H :  IFnl exp iq~H = ~ . ~  exp [Zzci(hxj + kyj + Izj)] 
j = l  

(6) 

because a large Fa will only be found if the atoms lie 
near positions for which hxy + kyj + lzj ,~ constant for 
aUj. Conversely, a strong intensity of H implies that the 
electron density will peak in planar regions which lie dn 
apart. The choice of the origin with respect to these 
planar regions of electron density defines the phase 
in (6). 

Large and small structure factor amplitudes thus 
may be used to predict where in the unit cell electron 
density can approximately be expected. 

neighbourhood of both sets of equidistant planes H and 
K, that is to say the electron density will be found near 
the lines of intersection of the planes H and K as 
indicated in projection in Fig. 2. A large I EI for the 
reflection --H -- K implies furthermore that the electron 
density will also peak in planes lying d-n-K apart. It is 
therefore most likely that these planes run through the 
lines of intersection of the planes H and K, in other 
words that the three sets of planes have their lines of 
intersection in common (Fig. 2). 

By choosing an origin O at an arbitrary point the 
triplet phase relationship can be found from a plani- 
metric theorem, proved in Fig. 3: 

AO/AD + BO/BE + CO/CF = 2, (7) 

which is equivalent to 

(0-H-K + q~n + (OK = 0 (modulo 2z0. (8) 

Since the origin is arbitrary (8) is completely general; 
relations of this type are usually called structure 
invariants, although a better name would be origin 
invariants. 

Large I EHI, I EKI and I E_n_KI : the triplet relationship 

If two reflections H and K are both strong then the 
electron density is likely to be found in the 

• v w 

(a) 

• 

Fig. 1. A reflected beam has a high intensity when the atoms lie in 
the neighbourhood of the set of planes H (a) and a weak intensity 
when the atoms are spread out randomly with respect to the 
planes H (b). 

Fig. 2. If the reflections H and K both have a high intensity, then 
the electron density will probably lie in the neighbourhood of the 
intersecting lines of the two sets of equidistant planes defined by 
H and K. When --H -- K is also a strong reflection it is more 
likely that the planes of high density o f - H  - K run through the 
intersecting lines (planes i) than just in-between (planes ii). 

A 

B D O C 
Fig. 3. In an arbitrary triangle A B C  an origin O has been chosen 

arbitrarily. Theorem: A O / A D  + B O / B E  + C O / C F  = 2. Proof: 
A O / A D  = A P / A C ;  C O / C F  = C R / A C ,  B O / B C  = A S / A C ;  

because R P  = SC,  A P  + CR + A S  = 2AC.  
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In Fig. 2 the ideal situation is sketched; of course a 
small shift of the planes of largest density of - H  - K 
does not affect the reasoning given above. However, the 
most unlikely position for these planes is the one 
indicated by the broken lines in Fig. 2 because then the 
planes --H -- K of largest electron density just clear the 
lines of intersection of H and K. 

The ~ 2 relation has a probability character and this 
is emphasized with the ~_ sign in (8) and then (1) follows. 
Clearly the triple product E 3 (equation 2) is large when 
all three reflections H, K and --H -- K have large I EI 
values. 

Large IEHI, IE_n+KI, IE_H_KI and small IEKI: 
H a r k e r - K a s p e r  relat ions 

small structures (N < 20). Schenk & de Jong (1973) 
showed that for larger structures the relations may still 
be useful if the conditions for the magnitude of the E 
values involved are relaxed. The relation can be 
interpreted geometrically (Schenk, 1973b). In Fig. 4 
the reasoning is given for a typical example. 

This explanation is not restricted to centro- 
symmetric structures; for non-centrosymmetric space 
groups the relation is 

(0n + (OH + (O-H+K + (O-H-K --~ n (10)  

for IEHI, IE-H+KI, IE_H-KI large and IEKI small 
(Schenk, 1973b). 

This relationship is a quartet, but because H occurs 
twice it is still two-dimensional. 

From one of the Harker -Kasper  inequalities for i it 
follows that if H, H -- K and H + K are strong 
reflections and K is weak the sign product 

S ( H  + K ) S ( H - -  K ) = - - 1  (9) 

(e.g. Woolfson, 1961). As is true for all Harker - 
Kasper relations this relation also is valid only in very 

1 
(a) 

1 

\ 

1 
(b) 

Fig. 4. The thicker lines are those for which the Fourier 
components cos (2nx,0,0), cos(0,2~,0), cos(2nx,2~,0) and 
cos(2nx,--2ny,0) are zero, 100, 110 and l i0 are strong 
reflections. If S(100) = S(110) = S(110) = +1 then a 
concentration of electron density can be expected in the shaded 
part of (a). If S(100) = S(1[0) = +1 and S(110) = - l ,  then a 
concentration of electron density can be expected in another part 
of the cell, which is shaded in (b). It can easily be checked that in 
case (a) 010 will be strong and in case (b) 010 will be small. 

The  posi t ive-quartet  relation 

For the positive-quartet relation 

(OH d- (OK -t- (OL q- ( O - " - K - L  ~-- 0 ,  (11) 

three strong reflections H, K and L are combined so 
that the electron density must be found in the sets of 
planes given in Fig. 5. As a result the electron density 
will be found near the points of intersection of the three 
planes, which is indicated for only a few planes from 
the sets in Fig. 6. Then for a strong reflection --H -- K 
-- L it is much more likely that it will run with its plane 
of maximum electron density through the point of 
intersection (Fig. 7a) than that it will just clear these 
points (Fig. 7b). Then the quartet relation (11) follows 
from the theorem of Fig. 8 for an arbitrary origin O 
(Fig. 7a): 

AO/AA'  + BO/BB'  + CO/CC' + DO/DD' = 3, (12) 

which is equivalent to the quartet relation (11). 
This quartet relation is not a reliable one compared 

with the triplet relation because of the factor N -1 in E4 
(equation 4), whereas in E 3 (equation 2) only a term 

ll 
I 

I 

" ~ L  
- . . .  

Fig. 5. If the reflections H, K and L are strong, then the electron 
density will probably lie in the neighbourhood of the three sets of 
equidistant planes defined by H, K and L. 
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[~r--1/2 appears.  Therefore,  the reliability was improved 
by  construct ing the same quartet  f rom two triplets: 

~D. -t- ~ K  "1- (~--H-K ~ 0 

~/~L "t- ~/}-H--K--L -t- (PH+ K ~ 0 

+ (~(  q- (~L -+- ( f f -H- -K-L  ~ - - 0 '  
(13) 

which holds for large E 4 and large IEH+KI (Schenk,  
1973a). 

This can be unders tood by drawing the H + K 
reflection into Fig. 6 as il lustrated in Fig. 9. Reflection 
H + K strong indicates tha t  the electron densi ty will be 
found near  the intersections of  H and K. A similar 
reasoning holds for the other cross terms. In con- 

I I 
Fig. 6. The electron-density will be found near the points of 

intersection of the three sets of planes H, K and L. 

° "".. ," I 

(a) 

I ,s 

/ I~ "~ ,~ I I 
I I "'~" ~''~. I 

I I "~ ~, I I I 
I 

~. I "~ I 

(b) 
Fig. 7. If reflection - H  - K - L has also a large intensity, it is 

more likely that its planes of maximum intensity run through the 
points of intersection of It, K and L (a) than that they run clear 
of them (b). 

clusion, large values of  E 4, IEH÷KI, IEK+LI and IEH÷LI 
indicate that  the positive quartet  (1) is likely to be true. 
This positive-quartet relat ionship proved to be reliable 
(Schenk, 1973a). 

T h e  n e g a t i v e - q u a r t e t  r e l a t i o n  

We can make one further point. When  the sum of  the 
four phases 

~O H -t" (/9 K -b (PL "Jr- ~ - H - K - L  ~--- 7[~ (14) 

the resulting relation is referred to as the negative- 
quartet  relation and such relations exist for reasonable  
intensities for H, K, L and - H  - -  K - L. 

The planes of  max imum density for the four 
reflections involved in (14) are indicated in Fig. 10. It 
can be seen that  at all indicated posit ions three of  the 
four planes intersect. If  a toms are located at these 
points the resulting uni tary structure factors of H, K, L 
and - H  - K -- L will be 0.5,  because three a toms lie in 
the planes and one lies ha l fway between. Thus  for a 

A 

8 

D 

Fig. 8. O is an arbitrary point in an arbitrary tetrahedron. 
Theorem: A O / A A '  + B O / B B '  + C O / C C '  + D O / D D '  = 3. 
Proof: From Fig. 3 it follows that A O / A A '  + B O / B B '  + P O / P Q  
= 2 and C O / C C '  + D O / D D '  + Q O / P Q  = 2. By taking the sum 
A O / A A '  + B O / B B '  + C O / C C '  + D O / D D '  = 4 - P O / P Q -  
O O / P O  = 3. 

I 

Fig. 9. If H, K, L and - H  - K - L are strong and electron density 
is found near their points of intersection, the H + K reflection, 
indicated with a dotted line, is expected to be strong. Conversely, 
a large IEH, K I supports the quartet relation (11). 
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negative-quartet relation the reflections H, K, L and 
- H  - K -- L will in general not be found amongst the 
very strongest. The next question to be answered is: 
what is the intensity of reflection H + K, if the electron 
density is located near the marked points of Fig. 10? 
From Fig. 11 it can be seen that H + K will have a 
small IEI magnitude: an equal number of points of 
electron-density concentration lies on the H + K planes 
and halfway in-between. As the same holds for the 
other cross terms it can be stated that the negative- 
quartet relation (14) is likely to be true for reasonably 
large values of E 4 and small values of IEn+K I, I EH+LI 

and I EK + L I. 
In a similar way it can be shown that an 

enantiomorph-sensitive quartet 

(OH "+" (ffK "+" ~0L "at" ~0-H-K-L ~-- +zt/2 (15) 

will be found for moderate I EI values of the cross 
terms. 

Concluding remarks 

The graphic analysis of triplets and quartets in terms of 
electron-density considerations leads to a few addition- 
al statements. 

m 

- [ - ~ -  ~- 

t / 
/ / 

i , ' /  

Fig. 10. In the case of the negative-quartet relation the planes of 
maximum electron density of H, K, L and - H  - K -- L run as 
indicated here. At distinct positions three planes intersect and 
there most probably will the electron density be found. 

--A 

Fig. 11. The reflection H + K is indicated with dotted lines. It is 
easily checked that this reflection is weak, because the electron 
density is distributed in equal amounts on and between the 
planes. 

1. The condition for a positive quartet that the 
electron density must lie in the neighbourhood of points 
is more specific than that for a triplet for which the 
electron density must lie near lines. This implies that the 
reflections involved in a quartet must have larger I EI 
values and thus the reliable and useful quartets will 
relate the phases of the strongest reflections. They 
therefore will be particularly helpful at an early stage of 
the phase determination process. This conclusion was 
drawn in the first paper on seven-magnitude quartets 
(Schenk, 1973a) from experimental evidence. Since 
then quartets have been used with success in the 
program system S I M P E L  (Overbeek & Schenk, 1978) 
for the determination of a large and reliable starting set 
in terms of the smallest possible number of symbols. 

2. With respect to negative quartets it was stated in 
the preceding section that the intensities of the 
reflections H, K, L and --H -- K -- L should be well 
below maximum otherwise the positive-quartet relation 
would apply. On the other hand, if these intensities are 
too small the prediction of the quartet phase sum is 
again unreliable. Therefore, in general, the number of 
reliable negative quartets will be much smaller than the 
number of positive quartets. As a result negative 
quartets will be more useful as a figure of merit than in 
the actual phasing procedure. 

3. If a negative-quartet relation does not yield 
exactly zt, this implies that the I El ' s  of the cross terms 
H + K, H + L and K + L are probably not exactly 
zero. Therefore, in FOM's  based on negative quartets, 
the individual relations must have weights which take 
into account the magnitudes of EH+K, EH+L and EK+L. 
In view of this the negative-quartet FOM NQC 
(Schenk, 1974) uses empirical weights proportional to 
(0.9 - IEI) with an I EI threshold of 0.9. The more 
widely used FOM NQEST (DeTitta, Edmonds, Langs 
& Hauptman, 1975) employs the IEl 's as threshold 
values only, which makes it less useful (Gilmore, 1977). 
On the basis of a theory of Giacovazzo (1975) the 
weights in NQC were later improved (Schenk, 1975). 

The author thanks Professors B. O. Loopstra and A. 
Fratini and Dr C. H. Stam who made helpful 
comments regarding the manuscript. 
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Abstract  

FeSiF6.6H20 above 240 K is described following 
the structural model previously proposed for 
MgSiF6.6H20 above 300 K: periodic antiphase built 
on the ordered monoclinic cell of the low-temperature 
form. In the present case a progressive ordering is 
observed and the antiphase boundaries are no longer 
planar but exhibit steps which lead to a mean boundary 
canted with respect to the c hexagonal axis (space 
group P3). Above 240 K a phase transformation 
occurs with a threefold twinning and a significant 
lattice deformation. The monoclinic cell (P21/c) is 
described. 

Introduct ion  

La s+rie des fluosilicates MSiF6.6H20 (M = m6tal 
divalent) a +t6 d6crite dans les groupes R3 pour M = 
Co, Ni, Zn (Kodera, Torri, Osaki & Watanabe, 1972; 
Ray, 1972; Ray, Zalkin & Templeton, 1973), R3m 
pour M = Fe, Mg (Hamilton, 1962; Syoyama & Osaki, 
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1972) et P3ml pour M = Mn (Kodera, Torri, Osaki & 
Watanabe, 1972). Dans le cas off M = Fe, Mg, nous 
avons mis en ~vidence (J~hanno & Varret, 1975) des 
r6flexions incompatibles avec le groupe d'espace 
propos6 (R3m). Pour M = Mg, ces r~flexions corres- 
pondent ~ des indices entiers et pour M = Fe ~ des 
indices 'incommensurables'. Toujours fines dans le cas 
de MgSiF 6. 6H20, elles ne le deviennent dans le cas de 
FeSiF 6. 6H20 que par abaissement de la temperature. 
De plus ces deux compos6s subissent une trans- 
formation de phase a T ~_ 300 K pour M = Mg et T_~ 
240 K pour M = Fe: la structure devient monoclinique 
P21/c (Syoyama & Osaki, 1972; J+hanno & Varret, 
1975; Volland, H6sl, Spiering, D~zsi, Kem6ny & Nagy, 
1978; Chevrier & J~hanno, 1979). 

Nous avons propos6 pour le fluosilicate de mag- 
n+sium b. temp+rature ambiante (Chevrier & J+hanno, 
1979) une structure bas+e sur ralternance p~riodique 
d'+l+ments de la structure basse temp6rature (P21/e) 
(antiphase fi p+riode enti+re). Nous montrons ici 
comment le traitement peut &re ~tendu au cas du 
fluosilicate de fer. 

© 1981 International Union of Crystallography 


